Nodal domain statistics for quantum chaotic maps
نویسندگان
چکیده
منابع مشابه
Nodal domain distributions for quantum maps
The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We s...
متن کاملNodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution.
We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of ge...
متن کاملDecoherence for classically chaotic quantum maps.
We study the behavior of an open quantum system, with an N-dimensional space of states, whose density matrix evolves according to a nonunitary map defined in two steps: A unitary step, where the system evolves with an evolution operator obtained by quantizing a classically chaotic map (baker's map and Harper's map are the two examples we consider). A nonunitary step where the evolution operator...
متن کاملAsymptotic Statistics of Nodal Domains of Quantum Chaotic Billiards in the Semiclassical Limit
Quantum chaos concerns eigenfunctions of the Laplace operator in a domain where a billiard ball would bounce chaotically. Such chaotic eigenfunctions have been conjectured to share statistical properties of their nodal domains with a simple percolation model, from which many interesting quantities can be computed analytically. We numerically test conjectures on the number and size of nodal doma...
متن کاملIntermediate statistics in quantum maps
We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2008
ISSN: 1367-2630
DOI: 10.1088/1367-2630/10/8/083023